文章
日志
帖子
首頁
論壇
博客
大講堂
人才網
直播課
資訊
全部
通信/手機
綜合電子
測試測量
半導體/EDA
微處理器
模擬/電源
可編程邏輯
嵌入式
汽車電子
醫療電子
工業電子
物聯網
可穿戴
機器人/飛行器
其他科技
傳感器/Mems
射頻微波
人工智能
技術文章
全部
通信/手機
綜合電子
測試測量
半導體/EDA
微處理器
模擬/電源
可編程邏輯
嵌入式
汽車電子
醫療電子
工業電子
物聯網
可穿戴
機器人/飛行器
其他科技
傳感器/Mems
射頻微波
人工智能
頻道
通信/手機
綜合電子
測試測量
半導體/EDA
微處理器
模擬/電源
可編程邏輯
嵌入式
汽車電子
醫療電子
工業電子
物聯網
可穿戴
機器人/飛行器
其他科技
傳感器/Mems
射頻微波
人工智能
登錄
注冊
創芯云服務 :
創芯投融資 |
創芯大講堂
|
創芯人才網 |
靜待更多...
技術
首頁 >
傳感器/Mems
>
內容
精準的硅芯片溫度檢測——顯示測量精度為±0.1°C
2020-12-28 13:56:27
來源:
ADI公司 Simon Bramble,現場應用工程師
摘要
本文檢驗最新一代硅
芯片
溫度傳感器的準確性。這些傳感器提供數字輸出,無需線性化,支持小封裝尺寸和低功耗。其中許多具備報警功能,以提醒系統存在潛在故障。
簡介
電子行業對精度的要求越來越高,溫度檢測也不例外。目前市面上有許多溫度檢測解決方案,每一種都有其優缺點。硅
芯片
溫度傳感器,線性度相對較高,而且精度遠超其他解決方案。但是,硅
芯片
溫度檢測領域的最新進展意味著,使用硅
芯片
解決方案將可以實現高分辨率和高精度。
新冰箱
那時正是2020年3月,英國即將進入封鎖狀態。全球都在囤積食物,以防超市關門,而未來似乎充滿不確定。就在這種時候,Bramble家的冰箱罷工了。滿腦子都回響著Kenny Rogers單曲“露西爾”中的歌詞“你怎么選擇在這樣一個時刻離開我”,我們開始在網上搜索新的替代品。
幾天后,新冰箱送來了,前面板上有數字溫度顯示,完全符合Bramble太太的需求。建議的設置溫度為-18℃,一個小時后,冰箱達到了所需的溫度,可以開始存放食物了。我有點懷疑溫度讀數的準確性,但只要能夠冷凍食物,我對此也不太在意。但問題是:我是一名工程師,有一顆熱衷探索的心,在連續幾天面對新冰箱毫無變化的數字讀數后,我崩潰了。我必須
測試
一下這件新電器的精度。
溫度傳感器
工業應用中使用的溫度傳感器種類繁多,各有其優缺點。鑒于有許多文本詳細介紹了各種溫度傳感器的操作,我不再贅述,只是提供一些總結。
熱電偶
熱電偶提供了一種低成本、中等精度的高溫
測量
方案。正如Thomas Seebeck在1821年發現的那樣,它們基于兩個結點之間產生的電壓,每個結點都由不同的金屬構成,放置于不同溫度環境下。對于K型熱電偶(由鎳鉻合金和鎳鋁金合金制成)來說,它輸出約41 μV/°C的電壓,可用于
測量
超過1000°C的溫度。但是,塞貝克效應依賴于兩個結點之間的溫度差,因此,在熱端
測量
相關溫度時,冷端必須持續
測量
已知的溫度。諷刺的是,在冷端需要另一個溫度傳感器來
測量
溫度,ADI公司 AD8494這樣的器件正好能夠完全解決這個問題。熱電偶本身的體積很小,所以熱質很低,能夠快速響應溫度變化。
RTD
行業廣泛使用電阻溫度檢測器(RTD)來
測量
中溫(<500°C)。這些器件由一種電阻會隨溫度的變化呈正變化的金屬元素組成,最常見的是鉑(Pt)。事實上,PT100傳感器是行業中使用最廣泛的RTD,因使用材料鉑制成,且在0°C時電阻為100 Ω而得名。雖然這些器件無法
測量
熱電偶那樣的高溫,但它們具有高線性度,且重復性較好。PT100需要精確的驅動電流,從而在傳感器上產生一個與溫度成比例的準確的壓降。PT100連接線的電阻導致傳感器的電阻
測量
出現誤差,所以開爾文連接是最典型的傳感器使用方法,因此出現3線或4線傳感器。
熱敏電阻
如果需要低成本的解決方案,且溫度范圍較低,那么使用熱敏電阻通常就足夠了。這些器件線性化程度很低,具有斯坦哈特哈特方程的特征,電阻隨溫度升高而減小。熱敏電阻的優點是,電阻會在小幅溫度變化下呈現大幅變化,所以,盡管它具有非線性,但仍然可以達到很高的精度。熱敏電阻還提供快速的熱響應。單個熱敏電阻的非線性是明確定義的,所以可以使用LTC2986這類的組件來進行校準。
二極管隨處可見,但(V
be
)壓降至吸電流并非如此...
為了
測試
這個新家電的準確性,最終我選擇使用硅
芯片
溫度傳感器。它們到手即用,無需冷端溫度補償或線性化,可以提供模擬和數字輸出,且預先經過校準。但是,直到最近,它們都只能提供中等準確性。雖然足以指示電子設備的健康狀態,但它們一直不夠精準,無法
測量
(例如)體溫,體溫
測量
通常需要達到±0.1°C的精度(根據ASTM E1112標準)。但是ADI公司最近發布的ADT7422和ADT7320硅
芯片
溫度傳感器改變了這一狀況,它們的
測量
分辨率分別為±0.1℃和±0.2℃。
硅
芯片
溫度傳感器利用晶體管的V
be
的溫度依賴性,根據莫爾方程,約為:
其中I
c
為集電極電流,I
s
為晶體管的反向飽和電流,q為電子上的電荷(1.602 × 10–19庫侖),k為玻爾茲曼常數(1.38 × 10–23),T為絕對溫度。
方程1中集電極電流的表達式也適用于二極管中的電流,那么為什么每個應用電路都使用晶體管而不是二極管呢?事實上,二極管中的電流還包括電子通過pn結的耗盡區與空穴重新結合所產生的復合電流,這表明二極管電流與V
be
和溫度具有非線性關系。這種電流也出現在雙極晶體管中,但流入晶體管的基極,不會出現在集電極電流中,因此非線性程度要低得多。
整合上述因素可以得出
與I
c
相比,I
s
很小,所以我們可以忽略方程2中的1項。我們現在可以看到,V
be
根據I
c
中的對數變化呈線性變化。我們也可以看到,如果I
c
和I
s
是常數,那么V
be
隨溫度呈線性變化,因為k和q也是常數。在晶體管中施加恒定的集電極電流,并
測量
V
be
如何隨溫度變化,這項任務很簡單。
I
s
與晶體管的幾何形狀有關,并且對溫度有很強的依賴性。和許多硅
芯片
器件一樣,溫度每上升10°C,其值就會翻倍。雖然ln函數降低了電流變化的影響,但仍然存在V
be
的絕對值隨晶體管的變化而變化的問題,因此需要校準。所以,實際的硅
芯片
溫度傳感器使用兩個完全相同的晶體管,迫使1 I
c
集電極電流進入一個晶體管,10 I
c
進入另一個。我們能在集成電路中輕松生成完全相同的晶體管和精準的比率電流,所以大多數硅
芯片
傳感器都使用這種結構。電流的對數變化會引起V
be
出現線性變化,然后
測量
V
be
的差值。
由方程2可知,對于溫度相同的兩個晶體管,其V
be
的差值為
這是因為
我們可以看出
通過使不同的電流通過每個晶體管并
測量
V
be
的差值,我們消除了非線性Is項、不同的V
be
的影響,以及與晶體管的幾何形狀相關的所有其他非線性效應。因為k、q和ln10都是常數,所以V
be
的變化與絕對溫度(PTAT)成正比。當電流差為10倍時,兩個V
be
的電流差在大約198 μV/°C時隨溫度呈線性變化。參見圖1查看實現這一效果的簡單電路。
圖1.
測量
溫度的基本電路。
必須慎重選擇圖1中的電流。如果電流過高,在晶體管的整個內部電阻范圍內,會出現很高的自發熱和壓降,從而影響
測量
結果。如果電流過低,晶體管內部的漏電流會增大誤差。
還應注意的是,前面的方程都與晶體管的集電極電流有關,而在圖1中,晶體管中注入的是恒定的發射極電流。在設計晶體管時,可以明確確定集電極和發射極電流之間的比例(且接近整數),這樣集電極電流與發射極電流成比例。
這還只是開始。要使硅
芯片
溫度傳感器達到±0.1°C的精度,還需要大量的表征和微調。
是一只鳥?還是一架飛機?
不,這是一個超級溫度計。是的,它們確實存在。需要將未校準的硅
芯片
溫度傳感器放入裝滿硅油的浴缸中,準確加熱到所需的溫度,然后使用超級溫度計進行
測量
。這些器件的
測量
精度可以精確到超過小數點后五位。將傳感器內部的保險絲熔斷,以調整溫度傳感器的增益,從而利用方程y = mx + c將其輸出線性化。硅油提供非常均勻的溫度,因此可以在一個周期內校準許多器件。
ADT7422在25℃至50℃溫度范圍內的精度為±0.1℃。這個溫度范圍以典型的38℃體溫為中心,使得ADT7422非常適合用于精準監測生命體征。在工業應用中使用時,我們對ADT7320進行了調整,使其精度達到±0.2℃,但溫度范圍擴大到-10℃到+85℃。
圖2.安裝在0.8 mm厚的PCB上的ADT7422。
但是,硅
芯片
溫度傳感器的校準并不是唯一的問題。采用極其精確的基準電壓時,裸片上的壓力會破壞傳感器的精度,以及PCB的熱膨脹、引線框架、模塑和裸露焊盤,所有這些都需要考慮。焊接工藝本身也有問題。焊料回流工藝會使零件的溫度提高到260℃,導致塑料封裝軟化,裸片的引線框架變形,這樣當零件冷卻,塑料變硬時,機械應力會被封存在裸片中。ADI公司的工程師花了好幾個月的時間進行細致的實驗,最終發現0.8 mm的PCB厚度最為合適,即使在焊接之后,也可以達到±0.1℃的精度。
那么香腸的溫度到底有多低?
我將ADT7320連接到一個微控制器和一個LCD顯示器上,并編寫了幾百行C語言代碼來初始化傳感器和提取數據——可以通過在DIN引腳上連續寫入32個1s來輕松初始化這個部分。配置寄存器被設置為使ADT7320以16位精度連續轉換。從ADT7320上讀取數據之后,至少需要等待240 ms的延遲之后,才會發生下一次轉換。為了便于使用非常低端的微控制器,所以我手動編寫了SPI。我將ADT7320放在冰箱里大約30分鐘,以獲取新冰箱的準確溫度。圖3顯示冰箱的溫度為–18.83°C。
圖3.冰箱的溫度為–18.83°C。
這種精度給我留下了非常深刻的印象,雖然存儲食品并不需要達到這種溫度精度等級。然后,在英國夏季的某一天,我
測量
了辦公室內的溫度。如圖4所示,溫度為22.87°C。
圖4.辦公室的溫度為22.87°C。
結論
硅
芯片
溫度傳感器已取得長足進步,變得非常精確,能夠實現非常高的生命體征監測精度。雖然它們內部的技術都是基于成熟的原理,但要使它們達到亞度精度水平,還是需要付出巨大的努力。即使達到了這種精度水平,機械應力和焊接也很容易抹掉數小時校準所取得的成果。
ADT7320和ADT7422代表了多年來達到亞度級精度溫度表征的技術頂峰,即使是在焊接到PCB上之后。
參考資料
Horowitz, Paul和Winfield Hill。
電子的藝術
。劍橋大學出版社,2015年4月。
Huijsing, Johan和Michiel Pertijis。
采用CMOS
技術的精密溫度傳感器
。Springer,2006年。
模擬電路設計
,第2卷,第32章。凌力爾特,2012年12月。
AD590數據手冊。ADI公司,2013年1月。
ADT5912數據手冊(即將發布)。ADI公司
作者簡介
Simon Bramble于1991年畢業于倫敦布魯內爾大學,擁有電氣工程和電子學學位,專門從事模擬電子器件和
電源
工作。他的職業生涯主要從事模擬電子器件工作,就職于凌力爾特(現為ADI公司的一部分)。
關鍵詞:
EETOP 官方微信
創芯大講堂 在線教育
創芯老字號 半導體快訊
相關文章
上一篇:
艾邁斯半導體與Precision Biomonitori
下一篇:
NDT出席2020年直投基金合伙人年會,展
全部評論
最新資訊
最熱資訊
兩會集成電路提案:《發揮新型舉國體制優勢
美光推出業界最先進的 176 層 NAND 技
為AI處理器集群供電
榮耀Magic4 Pro智能手機首次搭載Pixelwork
為體育盛會呈現智慧色彩體驗:艾邁斯歐司朗
第 12 代英特爾? 酷睿? 處理器推動英
FCC主席宣布2.5GHz拍賣 以推動6G發展
蘋果成為巴菲特的新“可口可樂” 六年助其
蘋果率先在俄羅斯停售產品 三星等競爭對手
折扣遠高于Intel AMD推銳龍、霄龍銷售返點
消息稱松下計劃在美國新建大型工廠 為特斯
蘋果加大Mini LED屏幕訂單 消息稱國內三
蘋果加大Mini LED屏幕訂單 消息稱國內三安光電已獲認證
突發!臺灣島全島大停電!臺積電等回應:影響正在確認中
沒有中國參與的制裁都將不太有效!美國要拉中國攜手制裁俄羅斯
中科院化學所制備出光伏效率超過 20% 的疊層有機光伏電池
創新引領 l 芯華章聯手芯來科技提升RISC-V處理器設計驗證
西數、鎧俠被污染的閃存工廠恢復運營 SSD價格仍有可能上漲
馬斯克為逃離烏克蘭的人免費提供特斯拉超級充電服務
Intel將物理封殺12代酷睿AVX512加速指令支持
蘋果iPhone單季產量歷史新高 iPhone SE3入門款新機下周發布
AMD、NVIDIA顯卡繼續跌價 RTX 3090一個月便宜1500元
明年iPhone 15有望全系采用“感嘆號”開孔設計
特斯拉一Model 3在美國高速公路上停車導致車禍 司機死亡
業界最熱文章
艾邁斯歐司朗攜手Cepton,搭載905nm激光
艾邁斯歐司朗紅外點陣投射器Belago 1.1
為體育盛會呈現智慧色彩體驗:艾邁斯歐司
瑞薩電子推出符合JEDEC標準的精密溫度傳
從光子到電子,圖像傳感器技術簡介
UWB人體存在傳感器:可探測出10米以外人
傳感器賦能智能手機變革,光學傳感器巨頭
艾邁斯歐司朗全新AS7343多通道光譜傳感器
從原理到制造再到應用,這篇文章終于把ME
GaN激光雷達驅動器已降至1美元!LiDAR即
劍指最熱指紋芯,FPC、芯啟航指紋性能參
OmniVision全新發布500萬像素RGB-IR圖像
高精度固態激光雷達在自動駕駛中的應用
隧道磁阻技術(TMR)及其應用簡介
Melexis 發布新款開發套件:輕松實現非
精準的硅芯片溫度檢測——顯示測量精度為
CIS很搶手!
精準的硅芯片溫度檢測——顯示測量精度為
Velodyne Lidar和尼康宣布達成激光雷達
北京君正收購豪威科技、思比科兩大圖像傳
ET創芯網(EETOP)-電子設計論壇、博客、超人氣的電子工程師資料分享平臺
論壇
博客
大講堂
人才網
直播課
關于我們
聯系我們
隱私聲明
@2003-2022 EETOP
京ICP備10050787號
京公網安備:11010502037710
久久精品中文字幕一区